
nufhe Documentation
Release 0.0.3

Bogdan Opanchuk

Jul 19, 2019

Contents

1 Contents 1

2 Introduction 17

3 Installation 19

4 A short example 21

5 Indices and tables 25

Python Module Index 27

Index 29

i

ii

CHAPTER 1

Contents

1.1 Implementation details

1.1.1 Polynomial multiplication

The main bottleneck of NuFHE gates is bootstrapping, and in it the most time is taken by multiplication of polynomials.
In the FHE scheme used, the polynomials are negacyclic (modulo 𝑥𝑁 + 1, where 𝑁 = 1024 by default), defined for
integers modulo 232 (with the coefficients stored as signed 32-bit integers). One of the factors always has coefficients
in range [−1024, 1024). Two methods are can be used for multiplication, convolution via FFT and convolution via
NTT (number theory transform)1.

FFT

Since the polynomials are negacyclic, it is not enough to transform the coefficients to Fourier space, multiply them
and then transform the result back — that would correspond to the regular cyclic convolution, that is multiplication of
polynomials modulo 𝑥𝑁 − 1. Our polynomials are negacyclic, which makes things slightly more complicated.

A straightforward approach is to extend the array of each polynomial’s coefficients, turning (𝑎0, . . . , 𝑎𝑁−1) into
(𝑎0, . . . , 𝑎𝑁−1,−𝑎0, . . . ,−𝑎𝑁−1). This way the regular convolution of these extended arrays will result in the nega-
cyclic convolution of original arrays.

The Fourier transform of such a signal (of total size 2𝑁) results in an array containing only 𝑁 non-zero elements (in
the positions with odd indices), of which the last 𝑁/2 are complex conjugates of the first 𝑁/2. This indicates that
a transform of size 𝑁/2 should be sufficient to obtain it. And indeed, if one uses standard approaches2 and takes
advantage of the two properties of the extended array: real elements and antiperiodicity, the problem can be reduced
to a transform of size 𝑁/2 with some pre- and post-processing.

The algorithm built this way maps poorly on the execution model of a GPU, because the pre- and post-processing

1 J. M. Pollard, “The Fast Fourier Transform in a Finite Field”, Mathematics of Computation 25(114), 365–365 (1971).
2 L. R. Rabiner, “On the Use of Symmetry in FFT Computation”, IEEE Transactions on Acoustics Speech and Signal Processing 27(3), 233–239

(1979).

1

http://dx.doi.org/10.2307/2004932
http://dx.doi.org/10.1109/TASSP.1979.1163235

nufhe Documentation, Release 0.0.3

required is not perfectly parallelizable. In NuFHE a technique based on D. J. Bernstein’s tangent FFT34 is used, which
in its core still has an 𝑁/2-size Fourier transform, but with a much simpler processing.

The algorithm is as follows. Given a vector 𝑎 of length 𝑁 , we define the forward transform as:

𝑐 = TFFT [𝑎] = FFT [𝑏] ,

where 𝑏 is a 𝑁/2-vector with the elements

𝑏𝑗 =
(︀
𝑎𝑗 − 𝑖𝑎𝑗+𝑁/2

)︀
𝑤𝑗 , 𝑗 ∈ [0, 𝑁/2),

and 𝑤 = exp (−𝜋𝑖/𝑁) is a 2𝑁 -th root of unity. Note that the complex vector 𝑐 consists of the first 𝑁/2 non-zero
elements Fourier-transformed extended coefficient array described above, except in a different order. Since we will
only use the Fourier-space array for convolution, the order does not matter.

The inverse transform 𝑎 = ITFFT [𝑐] is calculated as:

𝑏 = (IFFT [𝑐])
*

𝑎𝑗 = Re
(︀
𝑏𝑗𝑤

𝑗
)︀
, 𝑎𝑗+𝑁/2 = Im

(︀
𝑏𝑗𝑤

𝑗
)︀
, 𝑗 ∈ [0, 𝑁/2).

Using this pair of transforms, the negacyclic multiplication of two polynomials with coefficients 𝑢 and 𝑣 is performed
simply as

ITFFT [TFFT [𝑢] ∘ TFFT [𝑣]] ,

where ∘ stands for elementwise multiplication of two vectors.

Such pre- and post-processing is simple, perfectly parallel and requires only sequential memory access, which makes
it ideal for use on a GPU.

Note that this method will only work as long as the maximum possible result does not exceed the capacity of the
floating point number used for the underlying FFT (since the modulo 232 can only be taken after the FFT). In our case
we have coefficients limited by 32 bits and 11 bits respectively, plus 10 bits due to the polynomial size (1024), which
fits into 53 bits of the double-precision floating-point significand.

NTT

Alternatively, polynomial multiplication can be performed using an NTT, which is essentially an FFT operating on the
elements of a finite field of size 𝑀 , where 𝑀 is a prime number. Same as in the case of FFT, using an unmodified pair
NTT-INTT results in the regular cyclic convolution, and additional steps are necessary to turn it into the negacyclic
one. The scheme is very similar to the one used for FFT, and is described in5.

Given a vector 𝑎 of length 𝑁 , we define the forward transform as:

𝑐 = TNTT [𝑎] = NTT [𝑏] ,

where 𝑏 is a 𝑁 -vector with the elements

𝑏𝑗 = 𝑎𝑗𝑤
𝑗 , 𝑗 ∈ [0, 𝑁),

𝑤 = 𝑔(𝑀−1)/(2𝑁), and 𝑔 is a primitive element of the field. This means that 𝑤 is a 2𝑁 -th root of unity in the field,
just like the one in the FFT section. Note that 𝑀 − 1 must be a multiple of 2𝑁 .

3 D. J. Bernstein, “The Tangent FFT”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes 291–300 (2007).
4 D. J. Bernstein, “Fast multiplication and its applications”, Algorithmic Number Theory 44 (2008).
5 P. Longa and M. Naehrig, “Speeding up the Number Theoretic Transform for Faster Ideal Lattice-Based Cryptography”.

2 Chapter 1. Contents

https://dx.doi.org/10.1007/978-3-540-77224-8_34
http://cr.yp.to/lineartime/multapps-20080515.pdf
https://www.microsoft.com/en-us/research/publication/speeding-up-the-number-theoretic-transform-for-faster-ideal-lattice-based-cryptography/

nufhe Documentation, Release 0.0.3

Correspondingly, the inverse transform 𝑎 = ITNTT [𝑐] is

𝑎 = INTT [𝑐]

𝑎𝑗 = 𝑏𝑗𝑤
−𝑗 , 𝑗 ∈ [0, 𝑁).

Same as in the case of FFT, the negacyclic multiplication of two polynomials with coefficients 𝑢 and 𝑣 is performed
as

ITNTT [TNTT [𝑢] ∘ TNTT [𝑣]] .

Since the polynomial coefficients are signed integers, they have to be converted to the field elements first, by taking
them modulo 𝑀 . The field must be large enough to accommodate the full range of possible outcome values (53 bits
by deafult), before modulo 232 can be taken.

The choice of modulus in NTT

NuFHE, following cuFHE, uses a specifically chosen modulus and root of unity, which allow for some performance
optimizations.

The modulus (the size of the finite field) is chosen to be 𝑀 = 264 − 232 + 1. It has several important properties.
First, since the field elements are stored in 64-bit unsigned integers, arithmetic operations using this modulus can
take advantage of its form. For example, 𝑎mod𝑀 is simply 𝑎 if 𝑎 < 𝑀 and 𝑎 + UInt32(−1) if 𝑎 ≥ 𝑀 . Similar
optimizations can be employed for subtraction, multiplication or bitshift.

Second, 𝑀 − 1 is a multiple of 232, which means that it supports NTTs up to that size (when the size is a power of 2),
and multiplication of polynomials of up to the size 231.

The 𝑁 -th root of unity 𝑤𝑁 used in NTT can theoretically be based on any primitive element 𝑔 by setting 𝑤 =
𝑔(𝑀−1)/𝑁 . NuFHE (again, following cuFHE) uses a “magic” constant 𝑐 = 12037493425763644479, which is a
((𝑀 −1)/232)-th power of some primitive element. Therefore, for a given 𝑁 (which must be a power of 2), one takes
𝑤𝑁 = 𝑐2

32/𝑁 . The advantage of using this constant is that 𝑐2
32/64 = 8, which means that in NTT one can replace

most of multiplications by various powers of 𝑤𝑁 by modulo bitshifts, which are much faster.

1.1.2 References

1.2 API reference

1.2.1 High-level api

class nufhe.Context(rng=None, thread=None, device_id=None, api=None, interactive=False, in-
clude_devices=None, exclude_devices=None, include_platforms=None, ex-
clude_platforms=None)

An object encapuslating an execution environment on a GPU.

If thread is given, it will be used to create the context; otherwise, if device_id is given, it will be used; if
none of the above is given, the first device satisfying the given criteria will be used.

Parameters

• rng – a random number generator which will be used wherever randomness is required.
Can be an instance of one of the Random number generators (DeterministicRNG by
default).

• thread – a Reikna Thread object to use internally for the context.

1.2. API reference 3

https://github.com/vernamlab/cuFHE

nufhe Documentation, Release 0.0.3

• device_id (Optional[DeviceID]) – a GPGPU device (and API) to use for the con-
text.

• interactive – if True, an interactive dialogue will be shown allowing one to choose
the GPGPU device to use. If False, the first device satisfying the filters (see below) will
be chosen.

• api –

• include_devices –

• exclude_devices –

• include_platforms –

• exclude_platforms – see find_devices().

decrypt(secret_key, ciphertext)
Decrypts a message.

The low-level analogue: decrypt().

Returns a numpy.ndarray object of the type numpy.bool and the same shape as
ciphertext.

encrypt(secret_key, message)
Encrypts a message (a list or a numpy array treated as an array of booleans).

The low-level analogue: encrypt().

Returns an LweSampleArray object with the same shape as the given array.

load_ciphertext(file_or_bytestring)
Load a ciphertext (a LweSampleArray object) serialized with LweSampleArray.dump() or
LweSampleArray.dumps() into the context memory space.

The low-level analogues: LweSampleArray.load() and LweSampleArray.loads().

Returns an LweSampleArray object

load_cloud_key(file_or_bytestring)
Load a secret key (a NuFHECloudKey object) serialized with NuFHECloudKey.dump() or
NuFHECloudKey.dumps() into the context memory space.

The low-level analogues: NuFHECloudKey.load() and NuFHECloudKey.loads().

Returns a NuFHECloudKey object

load_secret_key(file_or_bytestring)
Load a secret key (a NuFHESecretKey object) serialized with NuFHESecretKey.dump() or
NuFHESecretKey.dumps() into the context memory space.

The low-level analogues: NuFHESecretKey.load() and NuFHESecretKey.loads().

Returns a NuFHESecretKey object

make_cloud_key(secret_key)
Creates a cloud key matching the given secret key.

The low-level analogue: NuFHECloudKey.from_rng().

Returns a NuFHECloudKey object.

make_key_pair(**params)
Creates a pair of a secret key and a matching cloud key.

The low-level analogue: make_key_pair().

4 Chapter 1. Contents

nufhe Documentation, Release 0.0.3

Returns a tuple of a NuFHESecretKey and a NuFHECloudKey objects.

make_secret_key(**params)
Creates a secret key, with params used to initialize a NuFHEParameters object.

The low-level analogue: NuFHESecretKey.from_rng().

Returns a NuFHESecretKey object.

make_virtual_machine(cloud_key, perf_params=None)
Creates an FHE “virtual machine” which can execute logical gates using the given cloud key. Optionally,
one can pass a PerformanceParameters object which will be specialized for the GPU device of the
context and used in all the gate calls.

Returns a VirtualMachine object.

nufhe.find_devices(api=None, include_devices=None, exclude_devices=None, in-
clude_platforms=None, exclude_platforms=None)

Returns a list of computation device identifiers for the given API and selection criteria. If there are several
platforms with suitable devices, only the first one will be used (so if you need a specific platform, use the
corresponding masks).

Parameters

• api – the GPGPU backend to use, one of None, "CUDA" and "OpenCL". If None is
given, an arbitrary available backend will be chosen.

• include_devices – a list of strings; only devices with one of the strings present in the
name will be included.

• exclude_devices – a list of strings; devices with one of the strings present in the name
will be excluded.

• include_platforms – a list of strings; only platforms with one of the strings present
in the name will be included.

• exclude_platforms – a list of strings; platforms with one of the strings present in the
name will be excluded.

Returns a list of DeviceID objects.

class nufhe.api_high_level.DeviceID(api_id, platform_id, device_id)
An identifier of a computation device suitable to run NuFHE. Obtained from find_devices(). Can be
passed to another thread/process and used to create a Context object.

api_name
The name of the API ("CUDA" or "OpenCL").

platform_name
The name of the platform.

device_name
The name of the device.

class nufhe.api_high_level.VirtualMachine(thread, cloud_key, perf_params=None)
A fully encrypted virtual machine capable of executing gates on ciphertexts (LweSampleArray objects) using
an encapsulated cloud key.

gate_<operator>(*args, dest: LweSampleArray=None)
Calls one of Logical gates, using the context, the cloud key, and the performance parameters of the virtual
machine.

If dest is None, creates a new ciphertext and uses it to store the output of the gate; otherwise dest is
used for that purpose.

1.2. API reference 5

nufhe Documentation, Release 0.0.3

Returns an LweSampleArray object with the result of the gate application.

empty_ciphertext(shape)
Returns an unitialized ciphertext (an LweSampleArray object).

The low-level analogue: empty_ciphertext().

load_ciphertext(file)
Load a ciphertext (a LweSampleArray object) serialized with LweSampleArray.dump into the
context memory space.

The low-level analogue: LweSampleArray.load.

Returns an LweSampleArray object

1.2.2 Parameters and keys

class nufhe.NuFHEParameters(transform_type=’NTT’, tlwe_mask_size=1)
Parameters of the FHE scheme.

Parameters transform_type – 'NTT' or 'FFT', specifying the transform to be used for in-
ternal purposes. 'FFT' is generally faster, but may not be supported on some videocards (since
it requires double precision floating point numbers).

Note: The default parameters correspond to about 128 bits of security.

class nufhe.NuFHESecretKey(params, lwe_key)
A secret key for the FHE scheme.

params
A NuFHEParameters object.

dump(file_obj)
Serialize into the given file_obj, a writeable file-like object.

dumps()
Serialize into a bytestring.

classmethod from_rng(thr, params, rng)
Generate a new secret key.

Parameters

• thr – a reikna Thread object.

• params (NuFHEParameters) – FHE scheme parameters.

• rng – an RNG object, one of Random number generators.

classmethod load(file_obj, thr)
Deserialize from the given file_obj, a readable file-like object, using the reikna thread thr to store
arrays.

classmethod loads(s, thr)
Deserialize from the given bytestring using the reikna thread thr to store arrays.

class nufhe.NuFHECloudKey(params, bootstrap_key, keyswitch_key)
A cloud key for the FHE scheme.

params
A NuFHEParameters object.

6 Chapter 1. Contents

nufhe Documentation, Release 0.0.3

dump(file_obj)
Serialize into the given file_obj, a writeable file-like object.

dumps()
Serialize into a bytestring.

classmethod from_rng(thr, params, rng, secret_key, perf_params=None)
Generate a new cloud key based on the given secret key.

Parameters

• thr – a reikna Thread object.

• params (NuFHEParameters) – FHE scheme parameters.

• rng – an RNG object, one of Random number generators.

• secret_key (NuFHESecretKey) – the secret key object.

• perf_params (Optional[PerformanceParametersForDevice]) – an over-
ride for performance parameters.

classmethod load(file_obj, thr)
Deserialize from the given file_obj, a readable file-like object, using the reikna thread thr to store
arrays.

classmethod loads(s, thr)
Deserialize from the given bytestring using the reikna thread thr to store arrays.

nufhe.make_key_pair(thr, rng, **params)
Creates a pair of NuFHESecretKey and NuFHECloudKey corresponding to NuFHEParameters created
with keywords params.

1.2.3 Random number generators

class nufhe.DeterministicRNG(seed=None)
A fast, but not cryptographically secure RNG. Useful for testing, since it allows seeding the initial state.

class nufhe.SecureRNG
A cryptographically secure RNG provided by the OS.

Note: This RNG can be very slow, leading to cloud key creation times of the order of minutes. Encryption is
not affected too much (the required amount of random numbers is much lower).

1.2.4 Encryption/decryption

nufhe.encrypt(thr, rng, key, message)
Encrypts a message.

Parameters

• rng – an RNG object, one of Random number generators.

• key (NuFHESecretKey) – the secret key.

• message – a numpy array of bit values to encrypt; if the dtype is not numpy.bool, it
will be converted to numpy.bool.

Returns an LweSampleArray object with the same shape as the given array.

1.2. API reference 7

nufhe Documentation, Release 0.0.3

nufhe.decrypt(thr, key, ciphertext)
Decrypts a message.

Parameters

• key (NuFHESecretKey) – the secret key.

• ciphertext (LweSampleArray) – an encrypted message.

Returns a numpy.ndarray object of the type numpy.bool and the same shape as
ciphertext.

nufhe.empty_ciphertext(thr, params, shape)
Creates an uninitialized LweSampleArray with the shape shape.

class nufhe.LweSampleArray(params, a, b, current_variances)
A ciphertext object.

shape
The shape of the encrypted plaintext message.

__getitem__(index)
Returns a view over the ciphertext (still a LweSampleArray object). The indexing works in the same
way as if it was a regular numpy array with the shape shape.

copy()
Returns a copy of the ciphertext.

dump(file_obj)
Serialize into the given file_obj, a writeable file-like object.

dumps()
Serialize into a bytestring.

classmethod load(file_obj, thr)
Deserialize from the given file_obj, a readable file-like object, using the reikna thread thr to store
arrays.

classmethod loads(s, thr)
Deserialize from the given bytestring using the reikna thread thr to store arrays.

roll(shift, axis=-1)
Cyclically shifts encrypted bits of the cyphertext inplace by shift positions to the right along axis.
shift can be negative (in which case the elements are shifted to the left). Elements that are shifted
beyond the last position are re-introduced at the first (and vice versa).

Works equivalently to numpy.roll (except axis=None is not supported).

nufhe.concatenate(lwe_sample_arrays, axis=0, out=None)
Concatenates several ciphertext arrays along axis.

1.2.5 Logical gates

Unary gates

nufhe.gate_constant(thr, cloud_key, result, vals, perf_params=None)
Fill each bit of the ciphertext result with the trivial encryption of the plaintext values from vals (which will
be converted to bool).

vals should be an array or a list with a shape broadcastable to the shape of result, or a scalar value.

8 Chapter 1. Contents

nufhe Documentation, Release 0.0.3

Note: “Trivial encryption” means that the result of this gate does not require a secret key for decryption, and
cannot be used to implement public key encryption. Its intended purpose is to initialize constants in bootstrapped
circuits.

Not bootstrapped; perf_params does not have any effect and is only present for the sake of API uniformity.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored. Must
be the same shape as the vals array.

• vals – a numpy.bool array (or anything castable to it) used to fill the ciphertext.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_copy(thr, cloud_key, result, a, perf_params=None)
Copy the contents of the ciphertext a to result.

Not bootstrapped; perf_params does not have any effect and is only present for the sake of API uniformity.

The shape of a should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the source ciphertext.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_not(thr, cloud_key, result, a, perf_params=None)
Homomorphic NOT gate. Applied elementwise on an encrypted array of bits.

Not bootstrapped; perf_params does not have any effect and is only present for the sake of API uniformity.

The shape of a should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the source ciphertext.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

1.2. API reference 9

nufhe Documentation, Release 0.0.3

Binary gates

nufhe.gate_and(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped AND gate. Applied elementwise on two encrypted arrays of bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_or(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped OR gate. Applied elementwise on two encrypted arrays of bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_xor(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped XOR gate. Applied elementwise on two encrypted arrays of bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_nand(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped NAND gate. Applied elementwise on two encrypted arrays of bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

10 Chapter 1. Contents

nufhe Documentation, Release 0.0.3

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_nor(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped NOR gate. Applied elementwise on two encrypted arrays of bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_xnor(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped XNOR gate. Applied elementwise on two encrypted arrays of bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_andny(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped ANDNY ((not a) and b) gate. Applied elementwise on two encrypted arrays of
bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

1.2. API reference 11

nufhe Documentation, Release 0.0.3

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_andyn(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped ANDYN (a and (not b)) gate. Applied elementwise on two encrypted arrays of
bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_orny(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped ORNY ((not a) or b) gate. Applied elementwise on two encrypted arrays of bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

nufhe.gate_oryn(thr, cloud_key, result, a, b, perf_params=None)
Homomorphic bootstrapped ORYN (a or (not b)) gate. Applied elementwise on two encrypted arrays of bits.

The shapes of a and b should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

12 Chapter 1. Contents

nufhe Documentation, Release 0.0.3

Ternary gates

nufhe.gate_mux(thr, cloud_key, result, a, b, c, perf_params=None)
Homomorphic bootstrapped MUX (b if a else c, or, equivalently, (a and b) or ((not a) and c)) gate. Applied
elementwise on three encrypted arrays of bits.

The shapes of a, b and c should be broadcastable to the shape of result.

Parameters

• thr – a reikna Thread object.

• cloud_key (NuFHECloudKey) – the cloud key.

• result (LweSampleArray) – an empty ciphertext where the result will be stored.

• a (LweSampleArray) – the ciphertext with the first argument.

• b (LweSampleArray) – the ciphertext with the second argument.

• c (LweSampleArray) – the ciphertext with the third argument.

• perf_params (Optional[PerformanceParametersForDevice]) – an override
for performance parameters.

1.2.6 Performance parameters

class nufhe.PerformanceParameters(nufhe_params, ntt_base_method=None,
ntt_mul_method=None, ntt_lsh_method=None,
use_constant_memory_multi_iter=None,
use_constant_memory_single_iter=None, trans-
forms_per_block=None, single_kernel_bootstrap=None,
low_end_device=None)

Advanced performance settings for bootstrapping.

For all the optional parameters below, if None is given, the library will attempt to select the best performing
variant, given the available information.

Parameters

• nufhe_params – a NuFHEParameters object.

• ntt_base_method – 'cuda_asm' or 'c'; An algorithm used in NTT for modulo
addition, modulo subtraction, and modulus.

• ntt_mul_method – one of 'cuda_asm', 'c_from_asm' and 'c'; An algorithm
used in NTT for modulo multiplication.

• ntt_lsh_method – one of 'cuda_asm', 'c_from_asm' and 'c'; An algorithm
used in NTT for modulo bitshift.

Note: 'cuda_asm' is only available for CUDA backend. When available, it is usually the fastest variant, or
close to it.

Parameters

• use_constant_memory_multi_iter – use constant GPU memory (as opposed to
global memory) for precalculated coefficients in NTT/FFT in kernels where one of these
transformations is executed multiple times per kernel call.

1.2. API reference 13

nufhe Documentation, Release 0.0.3

• use_constant_memory_single_iter – use constant GPU memory (as opposed to
global memory) for precalculated coefficients in NTT/FFT in kernels where one of these
transformations is executed once per kernel call.

Note: Using constant memory is usually beneficial on fast videocards if the transformation is executed many
times per kernel call.

Parameters transforms_per_block – a positive integer value, denoting how many separate
transforms to execute in parallel on a single GPU multiprocessor (compute unit).

Note: On most videocards 1 to 4 transforms is supported for NTT, and 1 to 8 for FFT. More transforms does
not necessarily mean better performance, since parallel threads on the same compute unit compete for resources.

Since it is not trivial to determine the maximum in advance, if the requested number is greater than that, it will
be dynamically reduced to the maximum possible value.

Parameters single_kernel_bootstrap – if True, execute bootstrap in a single kernel, in-
stead of many separate kernel calls in a loop.

Note: Single kernel bootstrap is only supported for default FHE parameters, and needs the videocard to support
a certain amount of parallel threads on a compute unit (256 for FFT, 512 for NTT). If available, it is usually
significantly faster, partially due to lower kernel call overhead.

Parameters low_end_device – if True, the optimal values for low-end videocards will be
picked. If None, the decision will be made based on the number of compute units the device
has.

for_device(device_params)
Specialize performance parameters for the given device (using a Reikna DeviceParams object).

Returns a PerformanceParametersForDevice object.

class nufhe.performance.PerformanceParametersForDevice(perf_params, de-
vice_params)

1.2.7 Utility functions

nufhe.clear_computation_cache(thr)
Clear the cache of computation objects compiled for the given reikna thread thr. This will help ensure a
correct realease of the thread’s resources when the other references to it go out of scope (which is especially
important for multi-threading applications using CUDA).

Note: Context objects call this function automatically on destruction.

14 Chapter 1. Contents

nufhe Documentation, Release 0.0.3

1.3 Version history

1.3.1 0.0.3 (19 Jul 2019)

• ADDED: LweSampleArray.copy() for cloning a ciphertext.

• ADDED: LweSampleArray.roll() that cyclically shifts encrypted bits if a ciphertext.

• ADDED: thread keyword parameter to Context, allowing one to use an existing Reikna Thread object to
create a context.

• ADDED: concatenate() for LweSampleArray objects.

• ADDED: __setitem__() functionality for LweSampleArray objects (the source must be another
LweSampleArray).

• ADDED: NTT transform now uses Montgomery multiplication for the cases where one of the factors can be
prepared in advance, increasing performance (mostly for the multi-kernel bootstrap).

• FIXED: result shape derivation in gate methods of VirtualMachine, including vm.gate_constant()
not accepting lists as arguments.

1.3.2 0.0.2 (14 Feb 2019)

• CHANGED: a PerformanceParameters object needs to be specialized for the device used (by calling its
for_device() method) before passing it to gates.

• CHANGED: instead of using numpy.random.RandomState for key generation and encryption,
DeterministicRNG and SecureRNG are available instead. The former is the wrapped RandomState,
fast, but not cryptographically secure; the latter is the secure random source provided by the OS, which can be
rather slow.

• ADDED: a high-level API hiding the Reikna details and removing some boilerplate.

• ADDED: shape checks in gate functions that take into account possible broadcasting.

• ADDED: dumps() and loads() methods for NuFHESecretKey, NuFHECloudKey and
LweSampleArray for serializing to/from bytestrings. The Context’s load_secret_key,
load_cloud_key and load_ciphertext also take bytestrings as arguments.

• ADDED: exposed clear_computation_cache() which helps release the resources associated with a
GPU context (the NuFHE Context objects call it automatically on destruction).

• ADDED: a find_devices() function to help with using multiple computation devices, and a corresponding
keyword device_id for Context class constructor that uses its return values.

• ADDED: an example of multi-threaded multi-GPU usage.

• FIXED: a bug in tlwe_noiseless_trivial() occasionally leading to memory corruption.

• FIXED: a bug where PerformanceParameters and PerformanceParametersForDevice objects
did not have a correct equality implementation, leading to unnecessary re-compilation of kernels.

• FIXED: compilation failing when transforms_per_block in PerformanceParameters is set too
high.

1.3.3 0.0.1 (12 Oct 2018)

Initial version.

1.3. Version history 15

nufhe Documentation, Release 0.0.3

16 Chapter 1. Contents

CHAPTER 2

Introduction

nufhe implements the fully homomorphic encryption algorithm from TFHE using CUDA and OpenCL. For the
theoretical background one may refer to the works TFHE is based on:

• C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based.”, Crypto 75-92 (2013);

• L. Ducas and D. Micciancio, “FHEW: Bootstrapping homomorphic encryption in less than a second.”, Euro-
crypt 617-640 (2015);

• I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. “Faster fully homomorphic encryption: Bootstrap-
ping in less than 0.1 seconds”, Asiacrypt 3–33 (2016).

For more details check out this collection of papers on lattice cryptography.

Some additional performance improvements employed by nufhe are described in Implementation details.

17

https://github.com/tfhe/tfhe
https://link.springer.com/chapter/10.1007/978-3-642-40041-4_5
https://link.springer.com/chapter/10.1007/978-3-642-40041-4_5
https://link.springer.com/chapter/10.1007/978-3-662-46800-5_24
https://link.springer.com/chapter/10.1007/978-3-662-53887-6_1
https://link.springer.com/chapter/10.1007/978-3-662-53887-6_1
https://cseweb.ucsd.edu/~daniele/LatticeLinks/FHE.html

nufhe Documentation, Release 0.0.3

18 Chapter 2. Introduction

CHAPTER 3

Installation

nufhe supports two GPU backends, CUDA (via PyCUDA) and OpenCL (via PyOpenCL). Neither of the backend
packages can be installed by default, because, depending on the videocard, one of the platforms may be unavailable.
Therefore, the user must pick one or more backends they want to use and request them explicitly during installation.
A simple rule of thumb is to pick CUDA if you have an nVidia videocard, and OpenCL otherwise (although OpenCL
will work with nVidia cards as well). Then nufhe can be installed using PyPi specifying the required extras.

For the CUDA backend:

$ pip install nufhe[pycuda]

For the OpenCL backend:

$ pip install nufhe[pyopencl]

For both CUDA and OpenCL backends:

$ pip install nufhe[pycuda,pyopencl]

19

https://documen.tician.de/pycuda/
https://documen.tician.de/pyopencl/

nufhe Documentation, Release 0.0.3

20 Chapter 3. Installation

CHAPTER 4

A short example

import random
import nufhe

ctx = nufhe.Context()
secret_key, cloud_key = ctx.make_key_pair()

size = 32
bits1 = [random.choice([False, True]) for i in range(size)]
bits2 = [random.choice([False, True]) for i in range(size)]

ciphertext1 = ctx.encrypt(secret_key, bits1)
ciphertext2 = ctx.encrypt(secret_key, bits2)

reference = [not (b1 and b2) for b1, b2 in zip(bits1, bits2)]

vm = ctx.make_virtual_machine(cloud_key)
result = vm.gate_nand(ciphertext1, ciphertext2)
result_bits = ctx.decrypt(secret_key, result)

assert all(result_bits == reference)

4.1 Context

ctx = nufhe.Context()

A context object represents an execution environment on a GPU (akin to a process), and is tied to a specific GPU
device (if there are several available). The target device can be either selected interactively, or picked automaticall
based on various filters; see the Context constructor for details.

Similar to a process, each context has its own memory space, and objects (keys and ciphertexts) from one context
cannot be used in another one directly. One can transfer them between contexts via serialization/deserialization, see
NuFHESecretKey.dump(), NuFHECloudKey.dump() and LweSampleArray.dump() for details.

21

nufhe Documentation, Release 0.0.3

4.2 Key pair

The next step is the creation of a secret and a cloud key. The former is used to encrypt plaintexts or decrypt cyphertexts;
the latter is required to apply gates to encrypted data. Note that the cloud key can be rather large (of the order of
100Mb).

secret_key, cloud_key = ctx.make_key_pair()

make_key_pair() takes some keyword parameters that affect the security of the algorithm; the default values
correspond to about 110 bits of security.

4.3 Encryption

Using the secret key we can encrypt some data with encrypt(). nufhe gates operate on bit arrays (either lists or
numpy arrays):

size = 32
bits1 = [random.choice([False, True]) for i in range(size)]
bits2 = [random.choice([False, True]) for i in range(size)]

ciphertext1 = ctx.encrypt(secret_key, bits1)
ciphertext2 = ctx.encrypt(secret_key, bits2)

In this example we will test the NAND gate, so the reference result would be

reference = [not (b1 and b2) for b1, b2 in zip(bits1, bits2)]

4.4 Processing

Calculations are performed on a fully encrypted virtual machine created out of a cloud key:

vm = ctx.make_virtual_machine(cloud_key)
result = vm.gate_nand(ciphertext1, ciphertext2)

The output of a gate can be pre-initialized with empty_ciphertext() and passed to any gate function as a dest
keyword parameter.

4.5 Decryption

After the processing, the person in possession of the secret key can decrypt the result with decrypt() and verify
that the gate was applied correctly:

result_bits = ctx.decrypt(secret_key, result)
assert all(result_bits == reference)

22 Chapter 4. A short example

nufhe Documentation, Release 0.0.3

4.6 GPU threads for the low-level API

nufhe uses Reikna as a backend for GPU operations, and all the low-level nufhe calls require a reikna Thread
object, encapsulating a GPU context and a serialization queue for GPU kernel calls. It can be created interactively:

from reikna.cluda import cuda_api

thr = cuda_api().Thread.create(interactive=True)

where the user will be offered to choose between available platforms and videocards. Alternatively, one can pick an
arbitrary available platform/device:

thr = cuda_api().Thread.create()

It is also possible to create a Thread using a known device, or an existing PyCUDA or PyOpenCL context. This is
advanced usage, for those who plan to integrate nufhe into a larger GPU-based program. See the documentation for
Thread and Thread.create() for details.

If one wants to use OpenCL instead of CUDA, cuda_api should be replaced with ocl_api. Alternatively, one can
use any_api to select an arbitrary available backend.

4.6. GPU threads for the low-level API 23

https://github.com/fjarri/reikna
http://reikna.publicfields.net/en/latest/api/cluda.html#reikna.cluda.api.Thread
https://github.com/inducer/pycuda
https://github.com/inducer/pyopencl
http://reikna.publicfields.net/en/latest/api/cluda.html#reikna.cluda.api.Thread
http://reikna.publicfields.net/en/latest/api/cluda.html#reikna.cluda.api.Thread.create

nufhe Documentation, Release 0.0.3

24 Chapter 4. A short example

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

25

nufhe Documentation, Release 0.0.3

26 Chapter 5. Indices and tables

Python Module Index

n
nufhe, 21

27

nufhe Documentation, Release 0.0.3

28 Python Module Index

Index

Symbols
__getitem__() (nufhe.LweSampleArray method), 8

A
api_name (nufhe.api_high_level.DeviceID attribute), 5

C
clear_computation_cache() (in module nufhe), 14
concatenate() (in module nufhe), 8
Context (class in nufhe), 3
copy() (nufhe.LweSampleArray method), 8

D
decrypt() (in module nufhe), 7
decrypt() (nufhe.Context method), 4
DeterministicRNG (class in nufhe), 7
device_name (nufhe.api_high_level.DeviceID attribute),

5
DeviceID (class in nufhe.api_high_level), 5
dump() (nufhe.LweSampleArray method), 8
dump() (nufhe.NuFHECloudKey method), 6
dump() (nufhe.NuFHESecretKey method), 6
dumps() (nufhe.LweSampleArray method), 8
dumps() (nufhe.NuFHECloudKey method), 7
dumps() (nufhe.NuFHESecretKey method), 6

E
empty_ciphertext() (in module nufhe), 8
empty_ciphertext() (nufhe.api_high_level.VirtualMachine

method), 6
encrypt() (in module nufhe), 7
encrypt() (nufhe.Context method), 4

F
find_devices() (in module nufhe), 5
for_device() (nufhe.PerformanceParameters method), 14
from_rng() (nufhe.NuFHECloudKey class method), 7
from_rng() (nufhe.NuFHESecretKey class method), 6

G
gate_and() (in module nufhe), 10
gate_andny() (in module nufhe), 11
gate_andyn() (in module nufhe), 12
gate_constant() (in module nufhe), 8
gate_copy() (in module nufhe), 9
gate_mux() (in module nufhe), 13
gate_nand() (in module nufhe), 10
gate_nor() (in module nufhe), 11
gate_not() (in module nufhe), 9
gate_or() (in module nufhe), 10
gate_orny() (in module nufhe), 12
gate_oryn() (in module nufhe), 12
gate_xnor() (in module nufhe), 11
gate_xor() (in module nufhe), 10

L
load() (nufhe.LweSampleArray class method), 8
load() (nufhe.NuFHECloudKey class method), 7
load() (nufhe.NuFHESecretKey class method), 6
load_ciphertext() (nufhe.api_high_level.VirtualMachine

method), 6
load_ciphertext() (nufhe.Context method), 4
load_cloud_key() (nufhe.Context method), 4
load_secret_key() (nufhe.Context method), 4
loads() (nufhe.LweSampleArray class method), 8
loads() (nufhe.NuFHECloudKey class method), 7
loads() (nufhe.NuFHESecretKey class method), 6
LweSampleArray (class in nufhe), 8

M
make_cloud_key() (nufhe.Context method), 4
make_key_pair() (in module nufhe), 7
make_key_pair() (nufhe.Context method), 4
make_secret_key() (nufhe.Context method), 5
make_virtual_machine() (nufhe.Context method), 5

N
nufhe (module), 3, 21

29

nufhe Documentation, Release 0.0.3

NuFHECloudKey (class in nufhe), 6
NuFHEParameters (class in nufhe), 6
NuFHESecretKey (class in nufhe), 6

P
params (nufhe.NuFHECloudKey attribute), 6
params (nufhe.NuFHESecretKey attribute), 6
PerformanceParameters (class in nufhe), 13
PerformanceParametersForDevice (class in

nufhe.performance), 14
platform_name (nufhe.api_high_level.DeviceID at-

tribute), 5

R
roll() (nufhe.LweSampleArray method), 8

S
SecureRNG (class in nufhe), 7
shape (nufhe.LweSampleArray attribute), 8

V
VirtualMachine (class in nufhe.api_high_level), 5

30 Index

	Contents
	Introduction
	Installation
	A short example
	Indices and tables
	Python Module Index
	Index

